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Abstract--An improved model for the calculation of radiative transfer in enclosures filled with an absorbing, 
emitting and scattering medium is presented. The model is denoted by a hybrid six-flux/zone model since 
it combines features of both the zone method and (three-dimensional) six-flux models. Compared to the 
zone method, computation time is considerably reduced and reaches approximately the same order as the 
faster flux-type models. The accuracy of the hybrid six-flux/zone model presented here is drastically 
improved without increasing computation time. This is achieved by introducing a correction for the 
directional characteristics of the propagation of radiation through adjacent zones. The thus improved 
hybrid model is evaluated for a realistic recognized test problem and found to be an efficient and accurate 

tool for calculating radiative transfer in enclosures filled with a participating medium. 

1. INTRODUCTION 

The Monte-Carlo  method [1, 2] and the zone method 
[3] are the most rigorous methods for computing radi- 
ative transfer in enclosures filled with a participating 
medium, as it occurs in industrial furnaces, com- 
bustion chambers or some types of  directly absorbing 
high temperature solar receivers [4]. Unfortunately 
sufficient accur~.cy of  both calculation methods is 
possible only at high computat ional  expense. 

For  this reason these methods are not  suitable as a 
part of  complex models where flow, reaction and heat 
transfer are calculated simultaneously because then 
computat ional  economy is important.  In those cases 
the faster but generally more inaccurate flux models 
[5, 6] are widely employed. For  three-dimensional 
problems six-flux models based on the Schus te~  
Schwarzschild approach are most common [7]. They 
are based on six subdivisions of  the 4n sr solid angle 
surrounding a point in the enclosure. In each sub- 
division the distribution of  radiative intensity leaving 
the point is simplified to one discrete radiation flux. 

In the last few years a simplified zone method was 
derived and applied by Scholand [8], Mehrwald [9] 
and Charette et al. [10]. This new method is char- 
acterized by good accuracy and considerably reduced 
computat ional  expense, therefore it seems to be a good 
alternative to flux models. In the present paper a 
hybrid six-flux/zone model  is developed which is based 
on this simplified zone method with the model  equa- 
tions being derived in the finite difference form of 
flux equations. The model  is implemented to compute 
radiative transfer in rectangular enclosures filled with 
a grey medium. In addition to the approaches reported 
in refs. [8-10], scattering in the medium is taken into 

account. The walls of  the enclosure are assumed to be 
grey and diffusely reflecting. The temperature dis- 
tribution of  the medium and the walls is assumed to 
be given. 

Results of  the hybrid model  for simple test cases 
show that the approaches of  Scholand, Mehrwald and 
Charette et al. yield incorrect computat ion of  radiative 
transfer if the emission of  the walls predominates over 
the emission of  the medium, or if  the number of  sub- 
divisions (zones) in the enclosure is high. It is therefore 
tempting to explore how radiative transfer within a 
single zone can be modified in order to achieve better 
results when computing the transfer through several 
zones. A simple and effective approach is presented 
and discussed in the present paper. 

2. THE HYBRID SIX-FLUX/ZONE MODEL 

The new hybrid six-flux/zone model presented here 
is based on subdivision of  the enclosure into finite 
volume elements (zones) similar to the zone method. 
The main difference from the zone method, however, 
is that the hybrid model  considers only radiative trans- 
fer between adjacent zones. Thus radiative transfer 
through the entire enclosure is calculated step by step 
from zone to zone, while the original zone method 
computes the direct interactions of  all zones. Hence 
the computational  expense of  the hybrid model  is 
reduced considerably when compared with the zone 
method (reduction factor of  up to 24 [10]). 

The hybrid model assumes imaginary planes sepa- 
rating the zones. The planes 'collect '  the radiation 
which is transferred from a given zone to its neighbour 
and then re-emit it diffusely. In other words, the 
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area 
scattering fraction backward 
scattering fraction forward 
configuration factor 
weighting factor 
radiative flux density in the x, y or z 
direction [W m 2] 
radiative flux density against the x,y 
or z direction [W m -21 
number of zones or subdivisions 
radiative flux density removed by a 
boundary [W m -2] 
transferred radiative power [W] 
scattering fraction sideward 
radiative source term in the medium 
[W m-  3] 
absolute temperature in the medium or 
at the boundaries [K]. 

Greek symbols 
A difference 
e emissivity of a boundary or emittance 

of a zone, respectively 
reception factor (F. z) 

p reflectivity of a boundary or 
reflectance of a zone, respectively 

NOMENCLATURE 

(7 Stefan Boltzmann constant 
[W m -2 K - 4 ]  

transmissivity of a boundary or 
transmittance of a zone, respectively 
function for the optimal determination 
of the weighting factor [W]. 

Subscripts 
b bottom 
e east 
i,j  walls or imaginary planes, respectively 

(w, e, s, n, b or t) 
k kth zone 
med medium 
n north 
rel relative 
s south 
t top 
w west 
x,y,z  coordinate directions 

coordinate directions (x,y or z) 
0 dimensionless quantity. 

Superscripts 
modified. 

imaginary planes condense the incident flux dis- 
tribution to one radiative flux with a perfectly diffuse 
characteristic, similar to some flux models [11]. 

The model equations of the hybrid model are 
derived by considering radiative transfer in one of the 
box-shaped zones. Such a zone is sketched in Fig. 
1. The following equation describes the radiant flux 
transferred from one zone through the imaginary 
plane in the east (subscript e) into the adjacent zone. 

Ie'Ae = 

f,: " ~r T4 " A~j + Fw,efw,.~ IwAy + F ~ , e  " IsA~j 
Y Y 

t e rm 1 term 2 te rm 3 

+ F~ e~n~" J~Ap + F b e f b ~ "  IbA ~ + Ft,ef t ,  e " JtAt 
. . . .  k Y / 

t e rm 4 te rm 5 te rm 6 

+ Z~x'IwAw + b ~ . J ~ A ~  + Syx~y'LA~ 
k ) k ) k ) y - - ' ~ # - -  -¢ 

t e rm 7 t e rm 8 te rm 9 

+ s ,~y ' JnA,  + S=,p~'IbAb + S:@:'JtAt; (1) 
k - ) k ) k - - ~ y  y - - -  y 

t e rm 10 te rm 11 te rm 12 

Term 1 describes emission of the grey medium in the 
zone. T is the mean temperature of the zone and gx is 
the mean emittance of the zone through the imaginary 
plane in the east (positive x direction). The value of 
g~ can be determined for example by the mean beam 
length concept [12, 13] or by a Monte-Carlo simu- 
lation of radiative transfer inside the zone [14]. 

Terms 2-6 describe transmission of all incoming 
fluxes through the zone to the imaginary plane Ae. 
The quantity Fij is the configuration factor between 
the diffusely emitting plane Ai and the absorbing plane 
Aj, with i, j 6  {w, e, s, n, b, t} [3]. The quantity fij is the 
mean transmittance of the zone for the radiation being 
transmitted from Ai to Ai. It can be determined anal- 
ogous to the emittance. 

Terms 7-12 consider the radiation that is scattered 
out of the zone through the plane A~. The quantity pC 
describes the scattered part of the radiation incident 
along the positive or the negative ~ direction. It can 
be determined by the following relationship : 

p~ = 1 - g ~ - ' ~  with ~ = x , y , z .  

In this relationship f¢ is the mean transmittance of the 
medium in the zone for radiation emitted diffusely by 
an imaginary plane normal to the ~ direction. [The 
derivation of ~¢ is described below in equations (23)- 
(25).1 

The scattering fractions f (forward), b (backward) 
and s (sideward) define how the scattered radiation is 
distributed onto the different imaginary planes sur- 
rounding the zone. They depend on the phase function 
and the optical thickness of the medium in the zone 
and can be determined by Monte-Carlo simulation 
[15] or by approximative methods [16]. 

The product of the quantities Fij and zjj is abbrevi- 
ated by the reception factor (Oij) : 
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enclosure 
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Incomlrlgfluxdensltles: Iw, de, Is, Jn, Ib, Jt 

outgolngfluxdenslUes: Jw, le, Js, In, Jb, It 

subscripts: w=w~t, e=east, s=south, n=north, b=bottom, t=top 

Fig. 1. (a) Subdivision of enclosure. (b) Designations of the 
zones. 

&j' .=F~j ' f , j  with i , j e{w,e , s ,n ,b , t } .  

It is possible to simplify equation (1) by taking advan- 
tage of the symmetry of the box-shaped zone. The 
areas of the imaginary planes can be expressed by 

A w = Ae = Ay. Az (2) 

A~ = A, = k x ' k z  (3) 

Ab = & = Ax" Ay (4) 

and the reception factors can be combined to 

0 ~  ,= &,o = ~°,w (5) 

Oyx : =  ~s.e  = On,e (6) 

Ozx : :  0b , e  = ~ t , e .  (7) 

Dividing equation (1) by Ao and considering equations 
( 2 ) - ( 7 )  results in the following equation for the out- 
going flux density to the zone in the east: 

le "= gx" aT4 + (O~x + fx~x) " IN 

+ b~p~" J~ + (Sy~ + SyATy) ~ .  (L + Jn) 

Ax 
+ (8:~ + s:~p=) Az"  (Ib + Jr). (8) 

Cyclic exchange of x , y  and z leads to analogous 
relationships for the other outgoing flux densities : 

Jw = e~'aT4 +(,gxx + f~#x)" J~ 

a x  
+ bxP~'/w + (O,x + S~xp,) XT" (/~ + Jn) 

Ax 
+ (,9:~ + s=~p:) ~Tz • (/b + J,) (9) 

/. = g .  ~ T  4 + (0 , ,  + f ~ p , )  .Is 

Ay 
+ b,&.  & + (0~,, + s.,Ox) ~x" (L  + L)  

+ (o:, + s:vp,) :Y .  (Ib + JO (lO) 

Js = g, " ~T4 + ( O. +LP>) ..i. 

Ay 
+ bypy" Is + (O~> + s,:yfix) Ax" (Iw + Je) 

+(O=>,+S=yO=)~Z'(Ib + Jt) (111 

I t : ~ : °  a T  4 + (0=  + f : p : )  • Ib 

Az 
+ b:P= " Jt + (:~= + sx.~P~) ~xx" (lw + J~) 

Az 
+ (0,.z +Sy=p,.) ~yy" (Is +Jn) (12) 

Orb = g~ "aT" + (O=+f=#=)"Jt 

Az 
+b:p:" Ib +(O~= + sx~px)~x'( lw + J~) 

Az 
+(~,=+sy.fiy)~yy-(I~+Jn). (131 

Equations (8)-(13) describe in each zone a system of 
six relationships that contain 12 unknown flux densi- 
ties. The number of unknowns can be reduced to six 
per zone by considering the identity of outgoing and 
incoming flux densities of adjacent zones and by for- 
mulating boundary conditions for those zones that 
are in contact with the walls of the enclosure. These 
boundary conditions are : 

Ii=~,i'qT4+pi'Ji for i = w , s , b  (14) 

and 

J i = e i ' a T 4 + P i ' L  for i = e , n , t  (15) 

where i is the subscript of the wall in contact with 
the zone, and T, el and p~ are the mean temperature, 
emissivity and reflectivity of the wall. 

First investigations with simple test problems 
showed that the hybrid model described above yields 
better results than common six-flux models only in 
some cases, and that its deviation from the exact solu- 
tion increases with the number of subdivisions in the 
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Fig. 2. Effect of the number of zones on the error predicted by 
the unmodified hybrid model when computing the radiative 
transfer from one emitting wall to the absorbing medium in 

a cubic enclosure. 
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Fig. 4. Radiative transport for the modified hybrid model 
(9 ~ 0.5) for an emitting wall. (The size of the arrows cor- 

responds to the transferred radiative flux.) 

enclosure [14]. An example is shown in Fig. 2. The 
test problem considered here is a cubic enclosure filled 
with an absorbing medium, surrounded by black walls 
and subdivided into a variable number  of cubic zones. 
Figure 2 displays the error produced by the hybrid 
model when computing the radiative transfer from 
one emitting wall to the absorbing medium. 

3. IMPROVEMENTS OF THE MODEL 

A closer look at the mechanism of radiative transfer 
implemented in the hybrid model shows the reason for 
those inaccuracies. The radiation transferred between 
two zones is modelled by assuming perfectly diffuse 
re-emittance of the radiation reaching an imaginary 
plane, thus information about  the directional dis- 
tr ibution of the radiation is lost. As shown in Fig. 3, 
this loss of information leads to ray paths which do 
not  correspond with reality. For  example, part of the 
radiation emitted by a plain wall is turned back to the 
wall, even if there is no scattering in the medium. 
Altogether the transport of  radiation through the 
enclosure results in many directional changes, thus 
elongating the path lengths in the medium artificially. 

To improve the model, we suggest modifying the 
exchange of radiation inside the zones by emphasizing 
radiative transfer to the opposite imaginary plane and 
reducing transfer to the adjacent planes. In order to 
achieve this, the reception factors between opposite 

I i i " ' *  [ _ _  Imag inary  p lanes  

....... ; . . . . . .  ~ . . . . . . . . . . .  , . . , _ . _ , _ , _ _ , _ _ , . . _ _ , . _ _  

J "   qYi-'--au i "" i 

Fig. 3. Radiative transport for the hybrid model for an emit- 
ting wall. (The size of the arrows corresponds to the trans- 

ferred radiative flux.) 

planes ~ are replaced by ,9}~, utilizing the following 
definition in which g e  [0, 1] is a weighting factor: 

0 } ~ , = g ' g ~ + ( 1 - g ) ' 0 ~  w i t h { = x , y , z .  (16) 

The new reception factors between adjacent planes 
are defined as function of O~ : 

with 

&Y " ( G - 0 ~ , )  (17) 

, o , :  . (~ , -oL)  (18) 

, , Oy~ "(~y--O;. , . )  (19) 

1 0vz o;= = ~. o ,  + o,:" (~ ' -  0;,) (20) 

, o_-x • ( e : -  0 2 0  ( 2 1 )  O'._x,=~" O.~+O~,-- 

O_-y • ( L -  0'-:) (22) o;,,==~, o .~+0 : ,  

G = ~gxx +2,9x).+20~: (23) 

~,. = 0,,,. + 20,.x + 20,__ (24) 

g_. = ,9~. + 2~9= + 2,9:.~.. (25) 

The definitions (16)-(22) ensure that the total trans- 
mission through a zone is not  influenced by the weight- 
ing factor 9, i.e. f~ = e¢ for ~ = x, y, z. The definitions 
also guarantee that the ratios between the reception 
factors to adjacent planes (O',. , /O~,O~.,/O;,: and 
O~x/,9_'?) are independent of 9- Figure 4 demonstrates 
the effect of these modifications on the directional 
characteristic of the propagation of radiation through 
several zones. It can be seen that the quanti ty of radi- 
ation returning to the emitting wall is reduced and 
that the radiation is led more directly through the 
medium which corresponds better to reality. In the 
extreme case of 9 = 1 the transmitted radiation is 
directed only forwards to the opposite imaginary 
plane of a zone. In this case the hybrid model behaves 
like a six-flux model. 
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In order to determine the best value for g, we util- 
ized the following procedure: radiative transfer was 
determined with the hybrid model in an enclosure of 
similar size, subdivision and optical properties as in 
the real problem. Since the temperature distribution 
in the enclosure is generally unknown, we assumed 
the medium to be at a uniform temperature (e.g. 1000 
K) and the surrounding walls to be at 0 K. The total 
radiative power transferred from the medium to the 
walls was computed for several values of the weighting 
factor 9 and compared with reference results from the 
zone method or Monte-Carlo simulation. The value 
ofg for which the hybrid model matched the reference 
case best was then chosen as the weighting factor in 
order to calculate the real problem. The following 
function was applied as a criterion for this opti- 
mization problem : 

qJ(g) = [AQmed(g)l "}-E [AQ/(g)I 
J 

for j = w , e , s , n ,  b a n d t  (26) 

where AQm~d is the difference between the model pre- 
diction of net emission of the entire medium and the 
reference solutic,n and AQj is the difference between 
the model prediction of absorption of one entire wall 
(j) and the reference solution. 

For the test problem described below function (26) 
reaches a minimal value for g = 0.51. The value ofg  
increases if the number of subdivisions of the enclosure 
is also increased. It decreases for increasing optical 
thickness in the ,enclosure [14]. 

4. THE TEST PROBLEM 

In order to assess the quality of the hybrid model, 
a realistic test problem is chosen as suggested and used 
by Selguk in refs [17, 18]. The test problem is based on 
data Str6mberg gathered in a large scale experimental 
furnace with steep temperature gradients, as they are 
typical for industrial furnaces [19]. The box-shaped 
experimental fu:rnace has a size of 0.96 × 0.96 x 5.76 
m in the x, y ant] z directions, respectively. The exact 
solution of radiative heat transfer was calculated by 
Selguk with the following assumptions [17] : 

1. The furnace is assumed as an enclosure with black 
walls, filled with a grey, emitting and absorbing 
medium. 

2. The absorption coefficient of the medium is con- 
stant throughout the enclosure. 

3. The temperature distribution of the enclosure is 
symmetrical with respect to the longitudinal axis 
(z-axis) of the furnace. 

4. The enclosure is subdivided into 4 × 4 × 24 cubic 
zones. 

Selguk computed the exact solution by using dimen- 
sionless quantities; for details see ref. [17]. 

5. ACCURACY 

Selguk used the test problem described above to 
evaluate a new six-flux model developed by her with 
Siddall. Results are compared with a six-term discrete 
ordinate model and a simpler six-flux model of the 
Schuster-Schwarzschild type [18]. The evaluation 
shows considerable improvements in accuracy and less 
computational expense of their model in comparison 
with the other models. This is achieved by the good 
adaptation of the new model to the geometry of the 
problem by using variable subdivision of the 4n sr 
solid angle. In the present paper the following models 
are used to evaluate the improved hybrid six-flux zone 
model: 

1. The six-flux model of Sel~uk and Siddall [6], shown 
to be most accurate for the test problem inves- 
tigated by Selguk [18]. 

2. The hybrid six-flux/zone model without modi- 
fication of radiative exchange inside the zones 
(g = 0), which is equivalent to the approaches of 
Mehrwald [9] and Charette et al. [10]. 

3. The hybrid six-flux/zone model with a modified 
radiative exchange inside the zones (g = 0.51) as 
described above. 

Figures 5-7 show the distribution of the dimensionless 
radiative source term predicted by the different models 
in comparison with the exact solution. The dis- 
tribution is plotted in three rows parallel to the z-axis 
of the furnace. The source terms predicted by the 
Selguk/Siddall model match the exact solution for the 
inner row of the medium (Fig. 5), but there are some 
differences for the corner row and the middle row 
(Figs. 6 and 7). 

The source terms are underpredicted by about 10% 
for the hybrid model with g = 0 (no modification). 
This is due to the overprediction of radiative path 
length in the medium discussed earlier which results 
in higher reabsorption of emitted radiation in the 
medium. Figures 5-7 show that this error is drastically 
reduced by emphasizing the forward direction in the 
radiative exchange within the zones : in all three rows 
the prediction of the modified hybrid model with 
g = 0.51 corresponds well with the exact solution. 

When considering the flux density removed by the 
side walls (Figs. 8 and 9), the values predicted by the 
hybrid model match the exact solution better than 
the Sel~uk/Siddall model in both cases, g = 0 and 
g = 0.51. This can be confirmed by computing the 
average deviation of the predicted values from the 
exact solution as shown in Table 1. The values in 
Table 1 are related to the mean source term of the 
medium or the mean flux density at the side walls, 
respectively : 

1 Nmod 
k--El I Sm°del'k -- S ...... k I Nmo~ 

ASro~ = (27) 1 Nmed 

Nme d k-~l Sexact,k 
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/ [  " "  ~ - . ~  - -  . . . .  Selcuk/Siddall-model 
~ ~'~'~'~,, . . . .  Hybrid model (g'O) 

E 0.30 / "~ '~ , , . : .  - . . . . . . .  Hybrid model (g=0.51) 

e / " . % .  
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0.10 -.. ~"--,. 
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Dimensionless longitudinal coordinate (Zo) 

Fig. 5. Comparison between exact values and model predictions (inner row of medium: x0 = 0.25, 
Y0 = 0.25). 
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Fig. 6. Comparison between exact values and model predictions (middle row of medium : Xo = 0.75, 
Y0 = 0.25). 

Table 1. Average deviation of model predictions from exact solution for source terms 
(S) and flux densities (q) 

Model 

Average deviation in Average deviation at 
the__medium, the longitudinal walls, 

AS~, [%] Aq~ [%] 

Selquk/Siddall model 2.7 18.1 
Hybrid model (g = 0) 6.7 8.4 
Hybrid model (g = 0.51) 1.1 7.3 
Hybrid model (g = 0.47) 1.3 7.0 
Hybrid model (g = 0.55) 0.9 7.8 
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Fig. 7. Compar ison between exact values and model predictions (corner row of medium:  x0 = 0.75, 
Y0 = 0.75). 
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1 Nwall 

k E  I =  [qmodel,k - -  q . . . . . .  k [ Nw~,, 
Aqr~ - 

1 N .  

Nwall k-~l qexactA 

where Nmod is the number of  zones in the medium and 
Nw,~ is the number of  subdivisions at the longitudinal 
walls. 

F rom Table 1 it can be concluded that the modified 
hybrid model  (9 = 0.51) is considerably more accu- 
rate than the Sel~uk/Siddall model or the unmodified 
hybrid model (9 = 0). Table 1 shows also that good 
accuracy is still given for values of  9 between 0.47 and 
0.55. Thus exact determination of  the weighting factor 
is not essential to yield good results, which facilitates 
practical application. 

Further  tests where optical depth, temperature dis- 
tribution and the number of  subdivisions in the fur- 
nace were varied also proved sufficient accuracy of  the 
hybrid model. This was confirmed by results of  a 
second test problem, in which radiative transfer in a 
particle receiver for concentrated solar radiation [11] 
was calculated [14]. This problem also included scat- 
tering in the medium. Results from Monte-Carlo  
simulations were used as reference in those tests and 
the hybrid model was compared with a simple six-flux 
model based on equal subdivisions of  the solid angle 
around a given point in the medium described in ref. 
[l l] .  

6. COMPUTATIONAL EXPENSE 

As can be seen from Table 1, the modified hybrid 
model is a good alternative to the six-flux models;  
but for most applications computational  expense is at 
least as important  as accuracy. In Table 2 the com- 
putational expense of  the hybrid model  is compared 
with the fastest six-flux model in the evaluation carried 
out by Selguk [18]. The values in Table 2 show the 
number of  iteration steps required to solve the system 
of linear equations resulting from six-flux models or 
hybrid models for the test problem. The iteration was 
terminated as soon as computed flux values in all grid 
points differed by less than 0.0001% from the values 
obtained in the previous iteration step [18]. 

Unfortunately,  the numerical solution procedure 
used for the hybrid model is not  identical to the one 
used for the six-flux model in ref. [18]. The solution 
of  the hybrid model is based on the GauB-Seidel algo- 

Table 2. Comparison of computational expense for the 
different models applied to the test problem 

Model Number of iteration steps 

Selguk/Siddall model 9 
Hybrid model (g = 0) 28 
Hybrid model (g = 0.51) 14 

rithm [20]. Six-flux models can take advantage of  their 
tri-diagonal type coefficient matrix, resulting in a 
reduced number of  iteration steps. On the other hand, 
they need more computing time per iteration step than 
the Gaul3-Seidel algorithm, thus computing time 
required to compute radiative transfer in the furnace 
with both models is about  the same [14]. 

7. CONCLUSION 

In this paper an improved hybrid six-flux/zone 
model for the calculation of  radiative transfer in 
enclosures filled with a participating medium has been 
presented. In continuation of  previous approaches, 
the directional distribution of  the radiation at the 
imaginary planes separating the zones is modified. 
The modification is controlled by a weighting factor. 

The importance of  modifying the directional dis- 
tribution was demonstrated for a realistic test prob- 
lem. Considerably improved accuracy in comparison 
with the unmodified hybrid model or with six-flux 
models was achieved. Furthermore,  computational  
expense of  the hybrid model was found to be com- 
parable with conventional flux models and thus much 
lower than the expense of  the zone method, therefore 
the modified hybrid model developed here represents 
considerable progress on the path to fast and highly 
accurate models for calculating radiative transfer. 
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